direkt zum Inhalt springen
direkt zum Hauptnavigationsmenü
Sie sind hier
Search
Electrical Engineering and Computer ScienceSensory Computation in Neural Systems
Search term:
1 | 2 | 3 | You are at page:4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Order by: Author Year Journal
Häusler, C., Susemihl, A.K., and Nawrot, M.P. (2013). Natural image sequences constrain dynamic receptive elds and imply a sparse code. Brain Research
Seymour, K., Stein, T., Sanders, L.L.O., Guggenmos, M., Theophil, I., and Sterzer, P. (2013). Altered contextual modulation of primary visual cortex responses in schizophrenia. Neuropsychopharmacology, 1-6.
Droste, F., Schwalger, T., and Lindner, B. (2013). Interplay of two signals in a neuron with heterogeneous synaptic short-term plasticity. Frontiers in Computational Neuroscience, 86.
Pröpper, R., and Obermayer, K. (2013). Spyke Viewer: a exible and extensible platform for electrophysiological data analysis. Frontiers in Neuroinformatics
Garcia, S., Dejean, C., Estebanez, L., Guarino, D., Jaillet, F., Jennings, T., Mahnoun, Y., Pröpper, R., Rautenberg, P., Rodgers, C., Sobolev, A., Wachtler, T., Yger, P., and Davison, A.P. (2013). Neo: a universal object model for handling electrophysiology data in multiple formats. Frontiers in Neuroinformatics
Bodiroža, S., Doisy, G., and Hafner, V.V. (2013). Position-invariant, real-time gesture recognition based on dynamic time warping. Proceedings of the 2013 8th ACM/IEEE International Conference on Human-Robot Interaction, 87-8.
Doisy, G., Bodiroža, S., and Jetvić, A. (2013). Spatially unconstrained, gesture-based humanrobot interaction. Proceedings of the 2013 8th ACM/IEEE International Conference on Human-Robot Interaction, 117-118.
Blythe, D.A.J., Meinecke, C., von Bünau, P., and Müller, K.-R. (2013). Explorative data analysis for changes in neural activity. Journal of Neural Engineering, 026018.
Spitzer, B., Gloel, M., Schmidt, T.T., and Blankenburg, F. (2013). Working memory coding of analog stimulus properties in the human prefrontal cortex. Cerebral Cortex
Rea, E., Rummel, J., Schmidt, T.T., Hadar, R., Heinz, A., Mathe, A.A., and Winter, C. (2013). Anti-anhedonic eect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: an intracranial self-stimulation paradigm study. Brain Stimulation
Reverberi, C., Görgen, K., and Haynes, J.-D. (2012). Distributed representations of rule identity and rule order in human frontal cortex and striatum. J. Neurosci., 17420-17430.
Ostwald, D., Spitzer, B., Guggenmos, M., Schmidt, T., Kiebel, S., and Blankenburg, F. (2012). Evidence for neural encoding of Bayesian surprise in human somatosensation. NeuroImage, 177-188.
Biessmann, F., Murayama, Y., Logothetis, N.K., Müller, K.-R., and Meinecke, F. (2012). Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions. Neuroimage, 1031-1042.
Onken, A., Dragoi, V., and Obermayer, K. (2012). A maximum entropy test for evaluating higher-order correlations in spike counts. PLoS Comput. Biol., e1002539.
Ritter, P., Schirner, M., Reinacher, M., Rothmeier, S., Schwarz, J., McIntosh, A., and Jirsa, V. (2012). Merging computational models and multimodal imaging data using The Virtual Brain. Human Brain Mapping
To top
Your file:
Choose action: Append Append and overwrite Delete all and include from file
Password:
Go to: