direkt zum Inhalt springen
direkt zum Hauptnavigationsmenü
Sie sind hier
Search
Electrical Engineering and Computer ScienceSensory Computation in Neural Systems
Search term:
1 | 2 | You are at page:3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Order by: Author Year Journal
Höhne, J., Krenzlin, K., Dähne, S., and Tangermann, M. (2013). Natural stimuli improve auditory BCIs with respect to ergonomics and performance. Journal of Neural Engineering, 045003.
Schönfelder, V.H., and Wichmann, F.A. (2013). Identication of stimulus cues in narrow-band tone-in-noise detection using sparse observer models. Journal of the Acoustical Society of America, 447-463.
Meckenhäuser, G., Hennig, R.M., and Nawrot, M.P. (2013). Critical song features for auditory pattern recognition in crickets. PLoS ONE
Samek, W., Meinecke, F.C., and Müller, K.-R. (2013). Transferring subspaces between subjects in brain-computer interfacing. IEEE Transactions on Biomedical Engineering
Haenicke, J., Pamir, E., and Nawrot, M.P. (2013). A computational model of fast associative learning in the honeybee. Conference talk, symposium 13, 10th Meeting of the German Neuroscience Society Gottingen
Helgadottir, L.I., Haenicke, J., Landgraf, T., Rojas, R., and Nawrot, M.P. (2013). Conditioned behavior in a robot controlled by a spiking neural network. Conference paper, 6th International IEEE EMBS Conference on Neural Engineering
Schoenfelder, V. (2013). Identification of Stimulus Cues in Tone-in-Noise Detection with Sparse Logistic Regression. Technische Universität Berlin
Sonnenschein, B., Sagués, F., and Schimansky-Geier, L. (2013). Networks of noisy oscillators with correlated degree and frequency dispersion. European Physical Journal B, 12.
Dold, H. (2013). On modelling data from visual psychophysics: A Bayesian graphical model approach. Technische Universität Berlin
Pamir, E. (2013). From behavioral plasticity to neuronal computation: An investigation of associative learning in the honeybee brain. Freie Universität Berlin
Schleimer, J.H. (2013). Spike statistics and coding properies of phase models – From ion channels to neural coding. Humboldt-Universität zu Berlin
Susemihl, A.K., Meir R., and Opper, M. (2013). Dynamic state estimation based on Poisson spike trains: Towards a theory of optimal encoding. Journal of Statistical Mechanics: Theory and Experiments
Pangalos, M., Donoso, J.R., Winterer, J., Zivkovic, A.R., Kempter, R., Maier, N., and Schmitz, D. (2013). Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples. Proc. Natl. Acad. Sci. USA, 4398-4403.
Samek, W., Blythe, D., Müller, K.-R., and Kawanabe, M. (2013). Robust spatial filtering with beta divergence. Advances in Neural Information Processing Systems
Kawanabe, M., Samek, W., Müller, K.-R., Vidaurre, C. (2013). Robust common spatial filters with a maxmin approach. Neural Computation
To top
Your file:
Choose action: Append Append and overwrite Delete all and include from file
Password:
Go to: