direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Search in All Publications

Search for publications




All Publications by GRK Members

S

Sonnenschein, B., and Schimansky-Geier, L. (2012). Onset of synchronization in complex networks of noisy oscillators. Phys. Rev. E


Sonnenschein, B., and Schimansky-Geier, L. (2013). Approximate solution to the stochastic Kuramoto model. Phys. Rev. E. American Physical Society, 052111.


Sonnenschein, B., Sagués, F., and Schimansky-Geier, L. (2013). Networks of noisy oscillators with correlated degree and frequency dispersion. European Physical Journal B, 12.


Sonnenschein, B., and Schimansky-Geier, L. (2013). An approximate solution to the stochastic Kuramoto model.


Seymour, K., Stein, T., Sanders, L.L.O., Guggenmos, M., Theophil, I., and Sterzer, P. (2013). Altered contextual modulation of primary visual cortex responses in schizophrenia. Neuropsychopharmacology, 1-6.


Schultze-Kraft, R., Görgen, K., Wenzel, M., Haynes, J.-D., and Blankertz, B. (2013). Cooperating brains: Joint control of a dual-BCI. Peer-reviewed Conference Proceedings of the Joint Action Meeting JAM 2013, Berlin, Germany


Schreuder, M., Riccio, A., Risetti, M., Dähne, S., Ramsey, A., Williamson, J., Mattia, D., and Tangermann, M. (2013). User-centered design in BCI - a case study. Artificial Intelligence in Medicine (accepted)


Schönfelder, V., and Wichmann, F.A. (2012). Sparse regularized regression identi es behaviorally-relevant stimulus features from psychophysical data. Journal of the Acoustical Society of America, 3953-3969.


Schönfelder, V.H., and Wichmann, F.A. (2013). Identi cation of stimulus cues in narrow-band tone-in-noise detection using sparse observer models. Journal of the Acoustical Society of America, 447-463.


Schönfelder, V.H., and Wichmann, F.A. (2008). Machine learning and auditory psychophysics: Unveiling tone-in-noise detection. Berlin Brain Days, Berlin, Germany


Schönfelder, V.H., and Wichmann, F.A. (2011). Extracting auditory cues in tone-in-noise detection with a sparse feature selection algorithm. Front. Comput. Neurosci.


Schönfelder, V.H., and Wichmann, F.A. (2009). Machine Learning in Auditory Psychophysics: System Identification beyond Regression Analysis. Berlin Brain Days, Berlin, Germany


Schönfelder, V.H., Fründ, I., and Wichmann, F.A. (2011). Peering into the black box: Using sparse feature selection to identify critical stimulus properties in audition. Berlin Brain Days, Berlin, Talk


Schönfelder, V. (2008). Machine Learning and Psychophysics: Unveiling Tone-in-Noise Detection. PhD Symposium at BCCN Conference, Munich, Germany


Schönfelder, V.H. and Wichmann, F.A. (2010). Machine Learning in Auditory Psychophysics: System Identification with Sparse Pattern Classifiers. Proceedings of KogWis – 10th Meeting of the German Society for Cognitive Science, Potsdam, 2010


To top

Import Publication

Upload BibTeX

Export all entries to BibTex

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions