direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Search in All Publications

Search for publications




All Publications by GRK Members

H

Hill, J., Farquhar, J., Martens, S.M.M., Bießmann, F., and Schölkopf, B. (2008). Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance. Advances in Neural Information Processing Systems, 665-673.


Helgadottir, L.I., Haenicke, J., Landgraf, T., and Nawrot, M.P. (2012). A robotic platform for spiking neural control architectures. Bernstein Conference proceedings [F128]


Helgadottir, L.I., Haenicke, J., Landgraf, T., Rojas, R., and Nawrot, M.P. (2013). Conditioned behavior in a robot controlled by a spiking neural network. Conference paper, 6th International IEEE EMBS Conference on Neural Engineering


Heinzle, J., Anders, S., Bode, S., Bogler, C., Chen, Y., Cichy, R.M., Hackmack, K., Kahnt, T., Kalberlah, C., Reverberi, C., Soon, C.S. Tusche, A., Weygandt, M., and Haynes, J.-D. (2012). Multivariate Dekodierung von fMRT-Daten: Auf dem Weg zu einer inhaltsbasierten kognitiven Neurowissenschaft. Neuroforum


Häusler, C., Nawrot, M. P., and Schmuker, M. (2010). A Neuromorphic Model of Dual Pathway Odour Classification. Front. Comput. Neurosci. Conference Abstract: Bernstein Conference on Computational Neuroscience


Häusler, C., Nawrot, M. P., and Schmuker, M. (2011). A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee. 5th International IEEE EMBS Conference on Neural Engineering 2011, Cancun, Mexico


Häusler, C., Susemihl, A.K., and Nawrot, M.P. (2013). Natural image sequences constrain dynamic receptive elds and imply a sparse code. Brain Research


Häusler, C., and Kampa, B. (2011). Cooperativity of cortical ensembles during natural vision. Invited Talk, Joint Workshop of the German Research Training Groups in Computer Science, June 20th-24th, 2011, Schloss Dagstuhl


Häusler, C., and Susemihl, A. (2012). Temporal autoencoding restricted Boltzmann machines. Deep Learning and Unsupervised Feature Learning Workshop at NIPS


Häusler, C., and Susemihl, A. (2012). Encoding and recall of natural image sequences with conditionally restricted Boltzmann machines. Front. Comput. Neurosci. Conference Abstract: Bernstein Conference 2012


Hahne, J.M., Rehbaum, H., Bießmann, F., Meinecke, F.C., Müller, K.-R., Jiang, N., Farina, D., and Parra, L.C. (2012). Simultaneous and proportional control of 2D wrist movements with myoelectric signals.. 2012 IEEE International Workshop on Machine Learning for Signal Processing


Haeusler, C. (2014). The brain as Data Source - Model - Inspiration. Freie Universität Berlin


Haenicke, J., Pamir, E., and Nawrot, M.P. (2012). A spiking neuronal network model of fast associative learning in the honeybee. Bernstein Conference proceedings [F95]


Haenicke, J., Pamir, E., and Nawrot, M.P. (2013). A computational model of fast associative learning in the honeybee. Conference talk, symposium 13, 10th Meeting of the German Neuroscience Society Gottingen


Hackmack, K. (2009). Decoding neurological disease from MRI brain patterns. Front. Comput. Neurosci.


To top

Import Publication

Upload BibTeX

Export all entries to BibTex

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions