direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Search in All Publications

Suche nach Publikationen




All Publications by GRK Members

Sparse regularized regression identifies behaviorally-relevant stimulus features from psychophysical data
Zitatschlüssel Schoenfelder2012
Autor Schönfelder, V.H., and Wichmann, F.A.
Seiten 3953-3969
Jahr 2012
DOI 10.1121/1.3701832
Journal The Journal of the Acoustical Society of America
Jahrgang 131(5)
Zusammenfassung As a prerequisite to quantitative psychophysical models of sensory processing it is necessary to learn to what extent decisions in behavioral tasks depend on specific stimulus features, the perceptual cues. Based on relative linear combination weights, this study demonstrates how stimulus-response data can be analyzed in this regard relying on an L1-regularized multiple logistic regression, a modern statistical procedure developed in machine learning. This method prevents complex models from over-fitting to noisy data. In addition, it enforces “sparse” solutions, a computational approximation to the postulate that a good model should contain the minimal set of predictors necessary to explain the data. In simulations, behavioral data from a classical auditory tone-in-noise detection task were generated. The proposed method is shown to precisely identify observer cues from a large set of covarying, interdependent stimulus features—a setting where standard correlational and regression methods fail. The proposed method succeeds for a wide range of signal-to-noise ratios and for deterministic as well as probabilistic observers. Furthermore, the detailed decision rules of the simulated observers were reconstructed from the estimated linear model weights allowing predictions of responses on the basis of individual stimuli.
Link zur Originalpublikation Download Bibtex Eintrag

Nach oben

Import Publication

Upload BibTeX

Alle Einträge nach BibTex exportieren

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe