direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Search in All Publications

Suche nach Publikationen

All Publications by GRK Members

Improving classification performance of BCIs by using stationary common spatial patterns and unsupervised bias adaptation
Zitatschlüssel WojHAIS2011
Autor Wojcikiewicz, W., Vidaurre, C., and Kawanabe, M.
Buchtitel Hybrid artificial intelligent systems
Seiten 34-41
Jahr 2011
ISBN 978-3-642-21221-5
DOI 10.1007/978-3-642-21222-2_5
Jahrgang 6679
Verlag Springer Berlin / Heidelberg
Serie Lecture Notes in Computer Science
Zusammenfassung Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations.
Download Bibtex Eintrag

Nach oben

Import Publication

Upload BibTeX

Alle Einträge nach BibTex exportieren

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe