direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Search in All Publications

Suche nach Publikationen

All Publications by GRK Members

Non-Separable Spatiotemporal Deconvolutions Improve Decoding of Neural Activity from fMRI Signals
Zitatschlüssel Biessmann2011
Autor Bießmann, F., Murayama, Y., Logothetis, N.K., Müller, K.R., and Meinecke, F.C.
Buchtitel NIPS Workshop "Machine Learning and Interpretation in Neuroimaging"
Jahr 2011
Zusammenfassung The goal of many functional Magnetic Resonance Imaging (fMRI) studies is to infer neural activity from hemodynamic signals. Classical fMRI analysis approaches assume that the hemodynamic response function (HRF) is identical in every voxel, i.e. it is separable in voxel-space and time. This study demonstrates to our knowledge for the first time directly that although the non-separable part is small, it significantly improves the decoding performance of intracortical neural signals from multivariate fMRI time series. Our results confirm previous findings using non-canonical HRFs and demonstrate that there is more neural information in fMRI signals than detected by classical analysis methods.
Link zur Originalpublikation Download Bibtex Eintrag

Nach oben

Import Publication

Upload BibTeX

Alle Einträge nach BibTex exportieren

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe