direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Search in All Publications

Search for publications

All Publications by GRK Members

<< previous [1]
next >> [19]


Höhne, J., Krenzlin, K., Dähne, S., and Tangermann, M. (2013). Natural stimuli improve auditory BCIs with respect to ergonomics and performance [23]. Journal of Neural Engineering, 045003.

Schönfelder, V.H., and Wichmann, F.A. (2013). Identi cation of stimulus cues in narrow-band tone-in-noise detection using sparse observer models [24]. Journal of the Acoustical Society of America, 447-463.

Meckenhäuser, G., Hennig, R.M., and Nawrot, M.P. (2013). Critical song features for auditory pattern recognition in crickets [25]. PLoS ONE

Samek, W., Meinecke, F.C., and Müller, K.-R. (2013). Transferring subspaces between subjects in brain-computer interfacing [26]. IEEE Transactions on Biomedical Engineering

Haenicke, J., Pamir, E., and Nawrot, M.P. (2013). A computational model of fast associative learning in the honeybee [27]. Conference talk, symposium 13, 10th Meeting of the German Neuroscience Society Gottingen

Helgadottir, L.I., Haenicke, J., Landgraf, T., Rojas, R., and Nawrot, M.P. (2013). Conditioned behavior in a robot controlled by a spiking neural network [28]. Conference paper, 6th International IEEE EMBS Conference on Neural Engineering

Schoenfelder, V. (2013). Identification of Stimulus Cues in Tone-in-Noise Detection with Sparse Logistic Regression [29]. Technische Universität Berlin

Sonnenschein, B., Sagués, F., and Schimansky-Geier, L. (2013). Networks of noisy oscillators with correlated degree and frequency dispersion [30]. European Physical Journal B, 12.

Dold, H. (2013). On modelling data from visual psychophysics: A Bayesian graphical model approach [31]. Technische Universität Berlin

Pamir, E. (2013). From behavioral plasticity to neuronal computation: An investigation of associative learning in the honeybee brain [32]. Freie Universität Berlin

Schleimer, J.H. (2013). Spike statistics and coding properies of phase models – From ion channels to neural coding [33]. Humboldt-Universität zu Berlin

Susemihl, A.K., Meir R., and Opper, M. (2013). Dynamic state estimation based on Poisson spike trains: Towards a theory of optimal encoding [34]. Journal of Statistical Mechanics: Theory and Experiments

Pangalos, M., Donoso, J.R., Winterer, J., Zivkovic, A.R., Kempter, R., Maier, N., and Schmitz, D. (2013). Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples [35]. Proc. Natl. Acad. Sci. USA, 4398-4403.

Samek, W., Blythe, D., Müller, K.-R., and Kawanabe, M. (2013). Robust spatial filtering with beta divergence [36]. Advances in Neural Information Processing Systems

Kawanabe, M., Samek, W., Müller, K.-R., Vidaurre, C. (2013). Robust common spatial filters with a maxmin approach [37]. Neural Computation

<< previous [38]
next >> [56]

To top

Import Publication

Upload BibTeX

Export all entries to BibTex [57]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008