Algorithms in a digital camera

Processing digital camera images

WS 10/11

Johannes Cremer
Overview

• Basic algorithms
 – Autofocus
 – Auto exposure
 – Histogram
 – Color balancing

• Advanced algorithms
Camera pipeline

- Auto focus
- Auto exposure
- Auto color balancing

- Aperture size
- Focus
- Exposure duration

- Optic system
 - Lens
 - Color filters
 - Aperture
 - Sensor

- Image analyses
- Interpolation for color reconstruction

- Image memory
- Further computation
Autofocus

• In a small area of the sensor
• Goal: get the highest contrast
Autofocus algorithm

Step 1: Measure the contrast in the focus area

Step 2: A small change is made to the focusing distance

Step 3: Measure the contrast again and calculate if and by how much the contrast improved

Step 4: Use this information to set a new focusing distance

Repeat until a satisfactory focus has been achieved
Auto exposure

Exposure time
Duration, the aperture of a camera is open (shutter speed)

Correct exposure: the entire image is in a good region of the sensor
Auto exposure algorithm

• Algorithm:

Step 1: Take a picture with a pre-determined EV_{pre}

$$EV = \log_2 \left(\frac{F^2}{T} \right) = 2 \log_2 (F) - \log(T)$$

Exposure Value (EV) specifies the relationship between aperture size, F, and exposure duration, T.
Auto exposure algorithm

Step 2: Convert the RGB values to Brightness B

Step 3: Derive a single number B_{pre} from the brightness picture
Step 4: Calculate the optimum exposure EV_{opt}, which should give us a brightness value close to B_{opt}

$$EV_{\text{opt}} = EV_{\text{pre}} + \log 2(B_{\text{pre}}) - \log 2(B_{\text{opt}})$$

B_{opt}: Brightness value from a calibration against a 18% grey card
Histogram

Shows the distribution of the pixel values
Learn to “read” a histogram

Correctly exposed image
underexposed image
overexposed image
Color balancing (e.g. White balancing)

- Humans adept to varying illumination conditions
- Image sensors can't, we have to compute it
Two ways of balancing:
 – Pre-computed sets
 – Guess with an algorithm
Grey world algorithm

Assumes, that the average color of the RGB values are equal (=grey)

\[R_{avg} = G_{avg} = B_{avg} \]

If not, compute coefficients to make them equal

\[\tilde{\alpha} = \frac{G_{avg}}{R_{avg}} \quad \tilde{\beta} = \frac{G_{avg}}{B_{avg}} \]

Good results, if picture has many colors
On camera implemented advanced algorithms:

- HDR
- Panorama stitching
- Face detection
- Focus bracketing
- ...
Thank you for listening
Auto-focus

Schematic auto focus system