Hierarchical Spatial Data Structures for Computer Graphics

TU Berlin - CG 2 – 2008

Tamy Boubekeur
Overview

• Spatial Grids
• Dimensional Trees
 – Quadtrees
 – Octrees
• kD-Trees
• BSP-Trees
• Implementation
• Comments
3D Objects

- Geometry + Appearance + Animation + Physics attributes +
- Representations are application-dependent
- Explicit geometry usually required
 - Several geometric representation for 3D models

- Today: just P, a set of points in the 3D space
 - Geometric sample or surface element p in P = point \{x, y, z\}

Book: *Fundations of Multidimensional and Metric Data Structures*, by Hanan Samet
Manipulating 3D Geometry

• Fields:
 – Geometric modeling
 – Image synthesis
 – Digital Animation

• Local processing
 – Avoiding to consider the entire model for each “question” the program may ask

→ Object partitioning

• Cutting the object in pieces
• Considering only the neighboring pieces when processing a given spatial location
Grids

• The straightforward solution!
 – Generate a 3D grid embedding the model
 – Classify the elements according to the cell they intersect
 • 3D rasterization
 – efficient, simple, enough in many cases
 – not adaptive, many empty cells and/or many over-populated cell
 – Still O(n)
 • Reduce the constants, not the order of complexity
 – The popular solution: trees!
Hierarchical Data Structures

• Everywhere in graphics:
 – Modeling
 • *Clustering, analysis, simplification, reconstruction, LOD generation, etc*
 – Rendering
 • *Ray tracing, photon mapping, radiosity, visibility, ambient occlusion, etc*
 – Animation
 • *Collision detection, crowd simulation, physically-based deformations, etc*
 – Virtual Reality
 • *Scene graph, LOD selection, parallel computing, etc*
Hierarchical Data Structures

• Main structures:
 – **kD-Tree** [Bentley 1975]: orthogonal organization of a set of samples
 – **BSP-Tree** [Fuchs et al. 1980]: « Binary Space Partition » tree, a binary and recursive space subdivision performed with hyperplanes and organized in a binary tree
 – **Quadtree/Octree** [Jackins & Tanimoto 1980]: dimensional structure (1-4 in 2D, 1-8 en 3D)
 – **BVH**: Bounding volume hierarchy

• Can be combined for a specific application.
Hierarchical Data Structures

• Standard questions to answer:
 – **Point intersection**: which partition contains a given 3D point?
 – **Ray intersection**: how to order partitions along a ray?
 – **Neighborhood query**: considering a point p, what are
 • the k nearest samples?
 • the set of samples within a distance r?
 – **Walking / General spatial ordering**
QuadTree

- Recursive 1-4 split in the plane (4 children by node)
- Internal node: « symmetric axis-aligned structure »
Octree

- The 3D version of the quadtree
- A special case of *bounding cube hierarchy*
- *Static* clustering policy
 - Split cubes in 8 equal cubes

![Level 0](image1.png) ![Level 1](image2.png)

Note: surface partition induced by volume partition
A very simple recursive implementation

```c
TYPE OctreeNode {
    OctreeNode children[8];
    Data data;  // Bounding Cube + misc. data (e.g. 3D points, color, etc)
}
OctreeNode buildOctree (Data data) {
    OctreeNode node;
    if (stopCriteria (data))
        init (node, data);  // fill children with NULL and affect data
    else
        Data * childData[8];
        dataSpatialSplit (data, dataChild);  // 8-split of the bounding cube and partitioning of data
        for (int i = 0; i < 8; i++)
            node.children[i] = buildOctree (childData[i]);
        node.data = NULL;
    return node;
}
Can also be implemented in an array (no pointer, quasi-perfect tree) or in a hashtable (Morton code)
```
kD-Tree

- Orthogonal binary tree
- Can be seen as a product of spatial orderings
- At each level:
 - Compute the bounding box
 - Split the box the longest edge

Algorithm:

```java
KDNode buildKDTree (PointList P) {
    BBox B = computeBoundingBox (P);
    Point q = findMedianSample (B,P);
    Node n;
    Plane H = plane (q, maxAxis (B))
    n.data = <q,H>;
    PointList Pu = upperPartition (P, H);
    PointList Pl = lowerPartition (P, H);
    n.leftChild = buildKDTree (Pu);
    n.rightChild = buildKDTree (Pl);
    return n;
}
```
kD-Tree Properties

- A beautiful algorithm
 - Spatial sorting
 - Dimension independent
 - Few numerical issues (for point sets)
- Very popular for nearest neighbors search
 - Range search: find all samples within a distance r to the p
 - Trivial to implement using sphere-box intersection tests
 - kNN search: find the k nearest neighbors
 - Various methods:
 - Direct: use a fixed size priority queue to order the nodes (O($k \log N$) for a balanced tree)
 - Iterative: loop over a guess/adjust range search, better in parallel context (GPU, multicore, etc)
- Raytracing
 - Can handle packets of rays
 - Geometric bias to balance a kD-Tree
 - e.g. Surface Area Heuristic, or SAH for triangles
BSP Tree

- Binary Space Partition Tree
- On each node: an hyperplane, with arbitrary location and orientation
BSP Tree

- Cutting planes:
 - Axis Aligned
 - Very similar to a kD-Tree
 - PCA analysis (*top-down*)
 - Principal Component Analysis on the set of sample P
 - Compute the covariance matrix M of the set
 - Eigen analysis of M
 - Use the centroid of P and the eigen vector associated to the largest
eigen value as a split plane.
 - Variational partitioning (Lloyd relaxation)

- **Difference kD-Tree / axis-aligned BSP?**
 - kD-Tree: *organization* structure, axis-aligned by definition
 - more efficient for point sets
 - BSP: more accurate spatial partitioning (the “pyramid” example)
 - more accurate

Nothing fixed : you decide !
Comparison

- **Adaptivity** at a given depth
 - Octree
 - kD-Tree
 - BSP-Tree

- **Simplicity** of code/Construction **Time**
 - Octree
 - kD-Tree
 - BSP-Tree

Good trade-off

Efficient heuristics to guarantee log (N) queries

Static ray-tracing
Comparison

Grid

Octree

BSP
Bounding Volume Hierarchy

- BVH vs Octree/kd-Tree/BSP-Tree:
 - Node \neq sum of its children
 - BV of the same BVH may intersect
 - BVH nodes have arbitrary valence
 - Arbitrary BV shape
 - Usually convex for simple intersection test
 - Construction principle:
 1. Find the smallest BV of P
 2. Split BV in n sub-BV
 3. Classify P in the n sub-BV and restart
- Classical BV: Bounding Sphere (BS), Axis-Aligned Bounding Box (AABB), Oriented Bounding Box (OBB)
Bounding Volume Hierarchy

Almost useless for geometric processing

Very successful for dynamic models:
- **BD-Trees** for scalable collisions
- BVH for interactive raytracing of dynamic scenes
- Superior to kD-Trees when the construction time matters
 - no triangle split

Very successful in virtual reality:
Inventor, OpenSG, OpenSceneGraph, NVSG, VRML, X3D, COLLADA… almost all scenes graphs are “enriched” BVH
Partitioning criteria

• When the recursive spatial subdivision should stop?
 – Max depth: uniform, hard to predict in general
 – Density-based: less than m samples per node
 – Error-driven: when the m samples of node no more violate a certain predicate
 • Geometric error metric (L2, QEF, mean/max curvature, etc)
 • Visual error metric (saliency, color variance, shader complexity)
 • etc

Note: in many applications, bucket trees
Implementation

• Pointers: simple, easy to manipulate
• Explicit offset: good for « complete » trees
 – None NULL children for internal nodes
• Hash-table: use a spatial location key
 – e.g. the Morton code
 – Good for optimization
• Construction scheme:
 – Breadth-first (BF): use a queue, good when there is a « budget » of nodes
 – Depth-first (DF): use a stack (implicit in recursive calls)
Implementation

• Highly programmable GPUs, multi-core CPUs: what about the parallel construction?
 – More or less still an open problem

 – One simple strategy: start with BF to “feed” enough threads, then switch to DF
 • Clearly sub-optimal for high density variation
 • Good for cache, map easily to CUDA for instance
 • The BF/DF switch is not always clear (early DF?)
Optimization

• Partial completion:
 – Made *perfect* the first M levels of the tree
 • *Direct* access up to depth M
 • Shrink significantly the query time for a negligible amount of memory

• Lifting scheme
 – « Local offset » for table implementation
 – Offset quantization on less bits

• « Use internal nodes »
 – In many applications, can describe roughly “what’s going on” in their sub-tree.
Exotic Trees

• Many trees are specialized graphics data structure:
 – **Volume-Surface Tree**: combines octree and local quadtrees for surface partitioning and processing
 – **Tile-Trees**: tree of « cube faces » for texturing surfaces
 – **Bounding Interval Hierarchy**
 – **Tetrahedra Hierarchy**: canonical finite element structure for physics simulations (volume partitioning)
Final word

• Recursive grids
 – Grids made hierarchical
 – Generalization of Octrees
 – Dual or primal

 – In practice: only few levels are necessary
 – Very convenient when accurate memory usage is not mandatory