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Abstract

Triple Graph Grammars are a well-established, formal and intuitive concept for the

speci�cation and analysis of bidirectional model transformations. In previous work we

have formalized and analyzed already termination, correctness, completeness, local

con�uence and functional behaviour.

In this paper, we show how to improve the e�ciency of the execution and analysis

of model transformations in practical applications by using triple rules with negative

application conditions (NACs). In addition to speci�cation NACs, which improve

the speci�cation of model transformations, the generation of �lter NACs improves

the e�ciency of the execution and the analysis of functional behaviour supported by

critical pair analysis of the tool AGG. We illustrate the results for the well-known

model transformation from class diagrams to relation database models.

Keywords: Model Transformation, Triple Graph Grammars, Functional Be-
haviour
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1 Introduction

Model transformations based on triple graph grammars (TGGs) have been introduced by
Schürr in [17]. TGGs are grammars that generate languages of graph triples, consisting
of a source graph GS and a target graph GT , together with a correspondence graph GC

�between� them. From a TGG, operational rules can be derived which de�ne various model
transformation and integration tasks, such as consistency checking, consistency recovery
and bidirectional model transformation. Since 1994, several extensions of the original
TGG de�nitions have been published [18, 15, 8], and various kinds of applications have
been presented [20, 9, 14].

For source-to-target model transformations, so-called forward transformations, forward
rules are derived which take the source graph as input and produce a corresponding target
graph. Major properties expected to be ful�lled for model transformations are termination,
correctness, completeness, e�cient execution and � for several applications � functional
behaviour. Termination, completeness and correctness of model transformations have been
studied already in [5, 2, 6, 3]. Functional behaviour of model transformations based on
triple graph grammars has been analyzed for triple rules without application conditions
in [13] using forward translation rules, which are derived from forward rules by additional
translation attributes for keeping track of the elements that have been translated so far.

The main aim of this paper is to extend the analysis techniques for functional be-
haviour in [13] to the case of triple rules with negative application conditions (NACs)
and to improve the e�ciency of analysis and execution of model transformations studied
in [2, 3, 6, 13]. For this purpose, we distinguish between speci�cation NACs and �lter
NACs. Speci�cation NACs have been introduced already in [6, 3], where triple rules and
corresponding derived source and forward rules have been extended by NACs in order to
improve the modeling power. Exemplarily, we show that NACs improve the speci�cation of
the model transformation CD2RDBM from class diagrams to relational data base models
presented in [5, 2]. Therefore, we extend the forward translation rules introduced in [13] by
corresponding NACs and show that model transformations based on forward translation
rules with NACs are equivalent to model transformations studied in [6, 3], such that main
results concerning termination, correctness and completeness can be transferred to our
new framework (see Thm. 1). In order to analyze functional behaviour we can use general
results for local con�uence of transformation systems with NACs in [16]. But in order
to improve e�ciency in the context of model transformations we introduce so-called �lter
NACs. They �lter out several misleading branches considered in the standard analysis of
local con�uence using critical pairs. In our second main result (see Thm. 2) we show how
to analyze functional behaviour of model transformations based on forward translation
rules by analyzing critical pairs for forward translation rules with �lter NACs. Moreover,
we introduce a strong version of functional behaviour, including model transformation se-
quences. In our third main result (see Thm. 3) we characterize strong functional behaviour
by the absence of �signi�cant� critical pairs for the corresponding set of forward translation
rules with �lter NACs.
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In Sec. 2 we introduce model transformations based on TGGs with speci�cation NACs
and show the �rst main result on termination, correctness, and completeness. In Sec. 3
we introduce forward translation rules with �lter NACs and present our main results on
functional and strong functional behaviour. Based on these main results we discuss in
Sec. 4 e�ciency aspects of analysis and execution. Related work and a conclusion are
presented in Sections 5 and 6.

This technical report is an extended version of [12] and presents the full proofs.

2 Model Transformations based on Triple Graph Gram-

mars with NACs

Triple graph grammars [17] are a well-known approach for bidirectional model transforma-
tions. Models are de�ned as pairs of source and target graphs, which are connected via a
correspondence graph together with its embeddings into these graphs. In this section, we
review main constructions and results of model transformations based on [18, 3, 13] and
extend them to the case with NACs.

A triple graph G =(GS ←sG−− GC −tG−→ GT ) consists of three graphs GS, GC , and GT , called
source, correspondence, and target graphs, together with two graph morphisms sG : GC →
GS and tG : GC → GT . A triple graph morphism m = (mS, mC , mT ) : G → H between
triple graphs G and H consists of three graph morphisms mS : GS → HS, mC : GC → HC

and mT : GT → HT such that mS ◦ sG = sH ◦mC and mT ◦ tG = tH ◦mC . A typed triple
graph G is typed over a triple graph TG by a triple graph morphism typeG : G→ TG .
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Figure 1: Triple type graph for CD2RDBM

Example 1. Triple Type Graph: Fig. 1 shows the type graph TG of the triple graph
grammar TGG for our example model transformation from class diagrams to database mod-
els. The source component TGS de�nes the structure of class diagrams while in the target
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component the structure of relational database models is speci�ed. Classes correspond to
tables, attributes to columns, and associations to foreign keys. Throughout the example,
originating from [5], elements are arranged left, center, and right according to the com-
ponent types source, correspondence and target. Morphisms starting at a correspondence
part are speci�ed by dashed arrows. The denoted multiplicity constraints are ensured by the
triple rules in Figs. 3 and 4.

Note that the case study uses attributed triple graphs based on E-graphs as presented
in [5] in the framework of weak adhesive HLR categories and we refer to [1] for more details
on attributed graphs.

(LS
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Figure 2: Triple rule and triple transformation step

Triple rules synchronously build up source and target graphs as well as their correspon-
dence graphs, i.e. they are non-deleting. A triple rule tr (left of Fig. 2) is an injective triple
graph morphism tr = (trS, trC , trT ) : L→ R and w.l.o.g. we assume tr to be an inclusion.
Given a triple graph morphism m : L → G, a triple graph transformation (TGT) step

G =
tr,m
==⇒ H (right of Fig. 2) from G to a triple graph H is given by a pushout of triple

graphs with comatch n : R → H and transformation inclusion t : G ↪→ H. A grammar
TGG = (TG , S,TR) consists of a triple type graph TG , a triple start graph S and a set
TR of triple rules.

Example 2. Triple Rules: The triple rules in Fig. 3 are part of the rules of the grammar
TGG for the model transformation CD2RDBM . They are presented in short notation,
i.e. left and right hand side of a rule are depicted in one triple graph. Elements which are
created by the rule are labeled with green "++" and marked by green line coloring. The rule
�Class2Table� synchronously creates a class in a class diagram with its corresponding table
in the relational database. Accordingly, subclasses are connected to the tables of its super
classes by rule �Subclass2Table�. Attributes are created together with their corresponding
columns in the database component via the rule �Attr2Column�.

(LS
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∅oo
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// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅

��
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target rule trT

(RS

id ��

LC
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tL // LT )
trT��

(RS RC
sRoo tR // RT )

forward rule trF

The operational rules for model transformations are automatically derived from the set
of triple rules TR. From each triple rule tr we derive a source rule trS for the construc-
tion resp. parsing of a model of the source language and a forward rule trF for forward
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Figure 3: Rules for the model transformation CD2RDBM , Part 1

transformation sequences. By TRS and TRF we denote the sets of all source and forward
rules derived from TR. Analogously, we derive a target rule trT and a backward rule trB

for the construction and transformation of a model of the target language leading to the
sets TRT and TRB.

A set of triple rules TR and the start graph ∅ generate a visual language VL of
integrated models, i.e. models with elements in the source, target and correspondence
component. The source language V LS and target language VLT are derived by projection
to the triple components, i.e. V LS = projS(V L) and V LT = projT (V L). The set V LS0 of
models that can be generated resp. parsed by the set of all source rules TRS is possibly
larger than VLS and we have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}.
Analogously, we have V LT ⊆ V LT0 = {GT |∅ =⇒∗ (∅← ∅→ GT ) via TRT}.

According to [6, 3] we present negative application conditions for triple rules. In most
case studies of model transformations source-target NACs are su�cient and we regard
them as the standard case.

De�nition 1. Triple Rules with Negative Application Conditions: Given a triple
rule tr = (L → R), a negative application condition (NAC) (n : L → N) consists of a
triple graph N and a triple graph morphism n. A NAC with n = (nS, idLC

, idLT
) is called

source NAC and a NAC with n = (idLS
, idLC

, nT ) is called target NAC. This means that
source-target NACs, i.e. either source or target NACs, prohibit the existence of certain
structures either in the source or in the target part only.

A match m : L → G is NAC consistent if there is no injective q : N → G such that
q ◦ n = m for each NAC L −n→ N . A triple transformation G

∗⇒ H is NAC consistent if all
matches are NAC consistent.
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Figure 4: Rules for the model transformation CD2RDBM , Part 2

Example 3. Triple Rules with NACs: Figure 4 and the upper part of Fig. 5 show
the remaining triple rules for the model transformation �CD2RDBM �. NACs are speci�ed
in short notation using the label �NAC� with a frame and red line colour within the frame.
A complete NAC is obtained by composing the left hand side of a rule with the red marked
elements within the NAC-frame. The rule �Association2ForeignKey� creates an association
between two classes and the corresponding foreign key and the NAC ensures that there is
only one primary key at the destination table. The parameters �an� and �cn� are used to set
the names of the association and column nodes. The rule �PrimaryAttr2Column� extends
�Attr2Column� by creating additionally a link of type �pkey� for the column and by setting
�primary=true�. Furthermore, there is a source and a target NAC, which ensure that there
is no primary attribute nor column currently present.

The extension of forward rules to forward translation rules is based on new attributes
that control the translation process according to the source consistency condition. For
each node, edge and attribute of a graph a new attribute is created and labeled with the
pre�x �tr �. Given an attributed graph AG = (G, D) and a family of subsets M ⊆ G for
nodes and edges, we call AG′ a graph with translation attributes over AG if it extends
AG with one boolean-valued attribute tr_x for each element x (node or edge) in M and
one boolean-valued attribute tr_x_a for each attribute associated to such an element x
in M . The family M together with all these additional translation attributes is denoted
by AttM . Note that we use the attribution concept of E-Graphs as presented in [1], where
attributes are possible for nodes and edges. While in this paper the translation attributes
are inserted in the source models they can be kept separate as an external pointer structure
in order to keep the source model unchanged as shown in Sec. 5 of [11].
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Figure 5: Rules for the model transformation CD2RDBM , Part 3

De�nition 2 (Family with Translation Attributes). Given an attributed graph AG =
(G, D) we denote by |G| = (V G

G , V D
G , EG

G , ENA
G , EEA

G ) the underlying family of sets contain-
ing all nodes and edges. Let M ⊆ |G|, then a family with translation attributes for (G, M)
extends M by additional translation attributes and is given by AttM = (V G

M , V D
M , EG

M , ENA, EEA)
with:

• ENA = ENA
M ·∪ {tr_x | x ∈ V G

M} ·∪ {tr_x_a | a ∈ ENA
M , srcNA

G (a) = x ∈ V G
G },

• EEA = EEA
M ·∪ {tr_x | x ∈ EG

M} ·∪ {tr_x_a | a ∈ EEA
M , srcEA

G (a) = x ∈ EG
G}.

De�nition 3 (Graph with Translation Attributes). Given an attributed graph AG =
(G, D) and a family of subsets M ⊆ |G| with {T,F} ⊆ V D

M and let AttM be a family
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with translation attributes for (G, M). Then, AG′ = (G′, D) is a graph with translation
attributes over AG, where |G′| is the gluing of |G| and AttM over M , i.e. the sets of nodes
and edges are given by componentwise pushouts and the source and target functions are
de�ned as follows:

• srcG
G′ = srcG

G, trgG
G′ = trgG

G,

• srcX
G′(z) =

{
srcX

G (z) z ∈ EX
G

x z = tr_x or z = tr_x_a
for X ∈ {NA, EA},

• trgX
G′(z) =

{
trgX

G (z) z ∈ EX
G

T or F z = tr_x or z = tr_x_a
for X ∈ {NA, EA}.

M
� � //

� _

��
(PO)

AttM

��
|G| // |G′|

AttvM , where v = T or v = F, denotes a family with translation attributes where all
attributes are set to v. Moreover, we denote by AG ⊕ AttM that AG is extended by the
translation attributes in AttM i.e. AG ⊕ AttM = (G′, D) = AG ′. Analogously, we use
the notion AG ⊕ Attv

M for translation attributes with value v and we de�ne Attv(AG) :=
AG⊕ Attv|G|.

The new concept of forward translation rules as introduced in [13] extends the con-
struction of forward rules by additional translation attributes in the source component.
The translation attributes keep track of the elements that have been translated so far,
which ensures that each element in the source graph is not translated twice. The rules are
deleting on the translation attributes and thus, the triple transformations are extended
from a single (total) pushout to the classical double pushout (DPO) approach [1]. We call
these rules forward translation rules, because pure forward rules need to be controlled by
an additional control conditions, such as the source consistency condition in [5, 3].

De�nition 4. Forward Translation Rules with NACs: Given a triple rule tr =
(L→ R), the forward translation rule of tr is given by trFT = (LFT ←lFT−− KFT −rFT−−→ RFT )
de�ned as follows using the forward rule (LF −trF−→ RF ) and the source rule (LS −trS−→ RS) of
tr , where we assume w.l.o.g. that tr is an inclusion:

• LFT = LF ⊕ AttTLS
⊕ AttFRS\LS

• KFT = LF ⊕ AttTLS

• RFT = RF ⊕ AttTLS
⊕ AttTRS\LS

= RF ⊕ AttTRS
,

• lFT and rFT are the induced inclusions.
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Moreover, for each NAC n : L → N of tr we de�ne a forward translation NAC nFT :
LFT → NFT of trFT as inclusion with NFT = (LFT +L N)⊕ AttTNS\LS

.

Remark 1. Note that (LFT +L N) is the union of LFT and N with shared L and for a
target NAC n the forward translation NAC nFT does not contain any translation attributes
because NS = LS.

Example 4. Forward Translation Rule with NACs: Fig 5 shows in its lower part
the forward translation rule with NACs �PrimaryAttr2ColumnFT �. According to Def. 4
the source elements of the triple rule �PrimaryAttr2Column� are extended by translation
attributes and changed by the rule from �F� to �T�, if the owning elements are created by
the triple rule. Furthermore, the additional elements in the NAC are extended by transla-
tion attributes set to �T�. Thus, the source NACs concern only elements that have been
translated so far.

From the application point of view model transformation rules should be applied along
matches that are injective on the structural part. But it would be too restrictive to require
injectivity of the matches also on the data and variable nodes, because we must allow that
two di�erent variables are mapped to the same data value. For this reason we use the
notion of �almost injective matches� [13], which requires that matches are injective except
for the data value nodes. This way, attribute values can still be speci�ed as terms within a
rule and matched non-injectively to the same value. Next, we de�ne model transformations
based on forward translation rules based on complete forward translation sequences.

De�nition 5. Completely Translated Graphs and Complete Sequences: A for-

ward translation sequence G0 =
tr∗FT==⇒ Gn with almost injective matches is called complete if

Gn is completely translated, i.e. all translation attributes of Gn are set to true (� T�).

De�nition 6. Model Transformation Based on Forward Translation Rules: A
model transformation sequence (GS, G′0 =

tr∗FT==⇒ G′n, GT ) based on forward translation rules
with NACs consists of a source graph GS, a target graph GT , and a complete TGT-sequence

G′0 =
tr∗FT==⇒ G′n with almost injective matches, G′0 = (AttF(GS) ← ∅ → ∅) and G′n =

(AttT(GS)← GC → GT ).
A model transformation MT : VLS0 V VLT0 based on forward translation rules with
NACs is de�ned by all model transformation sequences as above with GS ∈ VLS0 and
GT ∈ VLT0. All these pairs (GS, GT ) de�ne the model transformation relation MTR ⊆
VLS0 × VLT0. The model transformation is terminating if there are no in�nite TGT-
sequences via forward translation rules and almost injective matches starting with G′0 =
(AttF(GS)← ∅→ ∅) for some source graph GS.

Using Fact 1 below we are able to state our �rst main result in Thm. 1 concerning
termination, correctness and completeness of model transformations.
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Fact 1. Complete Forward Translation Sequences with NACs: Given a triple
graph grammar TGG = (TG , ∅,TR) with NACs and a triple graph G0 = (GS ← ∅→ ∅)
typed over TG. Let G′0 = (AttF(GS) ← ∅ → ∅). Then, the following are equivalent for
almost injective matches:

1. ∃ a source consistent and NAC-consistent TGT-sequence G0 =
tr∗F==⇒ G via forward

rules and G = (GS ← GC → GT ).

2. ∃ a complete NAC-consistent TGT-sequence G′0 =
tr∗FT==⇒ G′ via forward translation

rules and G′ = (AttT(GS)← GC → GT ).

Proof. By Lemma 1 and Fact 1 in [13] we have that each single step as well as the complete
sequences are equivalent disregarding the NACs. Thus, we show that the single steps are
equivalent and NAC consistent, the equivalence of the complete sequences follows directly.

For each step, we have transformations Gi−1,0 =
tri,S ,mi,S
=====⇒ Gi,0, Gi−1 =

tri,F ,mi,F
=====⇒ Gi,

G′i−1 =
tri,FT ,mi,FT
=======⇒ G′i with G′i−1 = Gi−1 ⊕ AttFG0\Gi−1,0

⊕ AttTGi−1,0
, G′i = Gi ⊕ AttFG0\Gi,0

⊕
AttTGi,0

, and mi,FT |Li,F
= mi,F .

For a target NAC n : Li → N , we have to show that mi,F |= n i� mi,FT |= nFT , the
corresponding forward translation NAC. If mi,FT 6|= nFT

, we �nd a monomorphism q′ with
q′ ◦ nFT = mi,FT . Since n = nFT |N , de�ne q = q′|N and it follows that q ◦ n = mi,F , i.e.
mi,F 6|= n. Vice versa, if mi,F 6|= n, we �nd a monomorphism q with q ◦ n = mi,F . Since
NS = Li,S, we do not have any additional translation attributes in NFT . Thus mi,FT can
be extended by q to q′ : NFT → G′i−1 such that mi,FT 6|= nFT .

Similarly, we have to show that for a source NAC n : L→ N , mi,S |= n i� mi,FT |= nFT .
As for target NACs, if mi,FT 6|= nFT

, we �nd a monomorphism q′ with q′ ◦ nFT = mi,FT

and for the restriction to Li,S and N it follows that q ◦ n = mi,S, i.e. mi,S 6|= n. Vice
versa, if mi,S 6|= n, we �nd a monomorphism q with q ◦ n = mi,S. Now de�ne q′ with
q′(x) = mi,FT (x) for x ∈ LFT , q′(x) = q(x) for x ∈ N\Li, and for each x ∈ NS\Li,S

we have that q(x) ∈ Gi−1,0. From the above characterization of G′i−1 it follows that the
corresponding translation attributes tr_x and tr_x_a are set to T in G′i−1. Thus, q′ is
well-de�ned and q′ ◦ nFT = mi,FT , i.e. mi,FT 6|= nFT .

Theorem 1. Termination, Correctness and Completeness: Each model transfor-
mation MT : VLS0 V VLT0 based on forward translation rules is

• terminating, if each forward translation rule changes at least one translation attribute
from �F� to �T�,

• correct, i.e. for each model transformation sequence (GS, G0 =
tr∗FT==⇒ Gn, GT ) there is

G ∈ VL with G = (GS ← GC → GT ), and it is

• complete, i.e. for each GS ∈ V LS there is G = (GS ← GC → GT ) ∈ VL with a

model transformation sequence (GS, G0 =
tr∗FT==⇒ Gn, GT ).
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Proof. Termination: Let TRFT be a �nite set of forward translation rules, such that each
rule changes at least one translation attribute. By Def. 4 we have that a forward translation
rule does not change the structure of the source component, but only the translation
attributes. These attributes are modi�ed exclusively from �F� to �T� and the number of
translation attributes remains the same. For a model GS of the source language VLS that
is �nite on the graph part, i.e. attributed with an algebra with possibly in�nite data sets,
we have that also the model G0 = (AttT(GS) ← ∅ → ∅) is �nite on the graph part.
Thus there are �nitely many translation attributes set to �F� and each application of a
forward translation reduces the amount of translation attributes set to �F�. This implies
that any sequence of transformation steps via TRFT is �nite. Furthermore, since the rule
components are �nite on the graph part also the models remain �nite on the graph part
ensuring that at each step there are �nitely many matches. Thus, the model transformation
terminates.

The correctness and completeness properties follow directly using Fact 1 and Thms. 2
and 3 in [6] as well as Thm. 2 in [13].

Applying a rule according to the DPO approach involves the check of the gluing con-
dition in general. However, in the case of forward translation rules and almost injective
matches we have that the gluing condition is always satis�ed. This means that the condi-
tion does not have to be checked, which simpli�es the analysis of functional behaviour in
Sec. 3.

Fact 2. Gluing Condition for Forward Translation Rules: Let trFT be a forward
translation rule and mFT : LFT → G be an almost injective match, then the gluing condition

is satis�ed, i.e. there is the transformation step G =
trFT ,mFT=====⇒ H.

Proof. According to Def. 9.8 in [1] we need to check that DP ∪ IP ⊆ GP . First of all, the
set IP may only contain data elements by the restriction of the match, which are in GP .
Furthermore, the set DP does only contain nodes. The rule is only deleting on attribution
edges and thus, DP ∪ IP ⊆ GP .

3 Analysis of Functional Behaviour

Functional behaviour of a model transformation means that each model of the source
language LS ⊆ VLS is transformed into a unique model of the target language. This section
presents new techniques especially developed to show functional behaviour of correct and
complete model transformations based on TGGs.

De�nition 7. Functional Behaviour of Model Transformations: A model transfor-
mation MT based on forward translation rules has functional behaviour if each execution of
MT starting at a source model GS of the source language LS ⊆ VLS leads to a unique tar-
get model GT ∈ VLT . The execution of MT requires backtracking, if there are terminating

TGT-sequences (AttF (GS)← ∅→ ∅) =
tr∗FT==⇒ G′n with G

′S
n 6= AttT (GS).
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tr=T
name=n
tr_name=T

:CT :TableS1:Class

tr=T

:CT

)

!
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tr=F

G0

G

:Table

name=n

Figure 6: Step G0 =
Class2TableFT========⇒ G with misleading graph G

The standard way to analyze functional behaviour is to check whether the underlying
transformation system is con�uent, i.e. all diverging derivation paths starting at the same
model �nally meet again. In the context of model transformations, con�uence only needs
to be ensured for transformation paths which lead to completely translated models. For
this reason, we introduce so-called �lter NACs that extend the model transformation rules
in order to avoid misleading paths that cause backtracking. The overall behaviour w.r.t.
the model transformation relation is preserved. Filter NACs are based on the following
notion of misleading graphs, which can be seen as model fragments that are responsible
for the backtracking of a model transformation.

De�nition 8. Translatable and Misleading Graphs: A triple graph with translation
attributes G is translatable if there is a transformation G

∗⇒ H such that H is completely
translated. A triple graph with translation attributes G is misleading, if every triple graph
G′ with translation attributes and G′ ⊇ G is not translatable.

Example 5. Misleading Graph: Consider the transformation step shown in Fig. 6.
The resulting graph G is misleading according to Def. 8, because the edge S2 is labeled with
a translation attribute set to �F�, but there is no rule which may change this attribute in
any bigger context at any later stage of the transformation. The only rule which changes the
translation attribute of a �parent�-edge is �Subclass2TableFT �, but it requires that the source
node S3 is labeled with a translation attribute set to �F�. However, forward translation rules
do not modify translation attributes if they are set to �T� already and additionally do not
change the structure of the source component.

12



De�nition 9. Filter NAC: A �lter NAC n for a forward translation rule trFT : LFT →
RFT is given by a morphism n : LFT → N , such that there is a TGT step N =

trFT ,n
===⇒ M

with M being misleading. The extension of trFT by some set of �lter NACs is called forward
translation rule trFN with �lter NACs.

LHS RHS

NAC

:CT :Table

S1:Class
tr=T

name=n

tr_name=T

S1:Class
tr=F

name=n

tr_name=F

S1:Class
tr=F

name=n

tr_name=F

:parent
tr=F

)

:Class

tr=T

Figure 7: A forward translation rule with �lter NAC: Class2TableFN

Example 6. Forward Translation Rule with Filter NACs: The rule Class2TableFT

is extended by a �lter NAC in Fig. 7, which is obtained from the graph G0 of the transfor-

mation step G0 =
Class2TableFT========⇒ G in Fig. 6, where G is misleading according to Ex. 5.

A direct construction of �lter NACs according to Def. 9 would be ine�cient, because
the size of the considered graphs to be checked is unbounded. For this reason we now
present e�cient techniques which support the generation of �lter NACs and we can bound
the size without losing generality. At �rst we present a static technique for a subset of �lter
NACs and thereafter, a dynamic generation technique leading to a much larger set of �lter
NACs. The �rst procedure in Fact 3 below is based on a su�cient criteria for checking
the misleading property. Concerning our example this static generation leads to the �lter
NAC shown in Fig. 7 for the rule Class2TableFT for an incoming edge of type �parent�.

Fact 3. Static Generation of Filter NACs: Given a triple graph grammar, then
the following procedure applied to each triple rule tr ∈ TR generates �lter NACs for the
derived forward translation rules TRFT leading to forward translation rules TRFN with
�lter NACs:

• Outgoing Edges: Check whether the following properties hold

� tr creates a node (x : Tx) in the source component and the type graph allows
outgoing edges of type � Te� for nodes of type � Tx�, but tr does not create an
edge (e : Te) with source node x.
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� Each rule in TR which creates an edge (e : Te) also creates its source node.

� Extend LFT to N by adding an outgoing edge (e : Te) at x together with a target
node. Add a translation attribute for e with value F. The inclusion n : LFT → N
is a NAC-consistent match for tr .

For each node x of tr ful�lling the above conditions, the �lter NAC (n : LFT → N)
is generated for trFT leading to trFN .

• Incoming Edges: Dual case, this time for an incoming edge (e : Te).

• TRFN is the extension of TRFT by all �lter NACs constructed above.

Proof. Consider a generated NAC (n : LFT → N) for a node x in tr with an outgoing edge

e in N \ L. A transformation step N =
trFT ,n
===⇒ M exists according to Fact 2 and leads to a

graph M , where the edge e is still labeled with a translation attribute set to �F�, but x is
labeled with �T�, because it is matched by the rule. Now, consider a graph H ′ ⊇M , such
that H ′ is a graph with translation attributes over a graph without translation attributes
H, i.e. H ′ = H⊕AttH0 for H0 ⊆ H ′ meaning that H ′ has at most one translation attributes
for each element in H without translation attributes.

In order to have that M is misleading (Def. 8), it remains to show that H ′ is not
translatable. Forward translation rules only modify translation attributes from �F� to
�T�, they do not increase the amount of translation attributes of a graph and no structural

element is deleted. Thus, each graph Hi in a TGT sequence H ′ =
tr∗FT==⇒ Hn will contain the

edge e labeled with �F�, because the rules, which modify the translation attribute of e are
not applicable due to x being labeled with �T� in each graph H i in the sequence and there
is only one translation attribute for x in H ′. Thus, each Hn is not completely translated
and therefore, M is misleading. This means that (n : LFT → N) is a �lter NAC of trFT .
Dualizing the proof leads to the result for a generated NAC w.r.t. an incoming edge.

The following dynamic technique for deriving relevant �lter NACs is based on the
generation of critical pairs, which de�ne con�icts of rule applications in a minimal context.
By the completeness of critical pairs (Lemma 6.22 in [1]) we know that for each pair of two
parallel dependent transformation steps there is a critical pair which can be embedded. For
this reason, the generation of critical pairs can be used to derive �lter NACs. A critical
pair either directly speci�es a �lter NAC or a con�ict that may lead to non-functional
behaviour of the model transformation.

For the dynamic generation of �lter NACs we use the tool AGG [21] for the generation
of critical pairs for a plain graph transformation system. For this purpose, we �rst perform
the �attening construction for triple graph grammars presented in [2, 13] extended to NACs

using the �attening construction for morphisms. A critical pair P1 ⇐
tr1,FT
==== K =

tr2,FT
===⇒ P2

consists of a pair of parallel dependent transformation steps. If a critical pair contains
a misleading graph P1 we can use the overlapping graph K as a �lter NAC of the rule
tr 1,FT . However, checking the misleading property needs human assistance, such that the
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generated critical pairs can be seen as �lter NAC candidates. But we are currently working
on a technique that uses a su�cient criteria to check the misleading property automatically
and we are con�dent that this approach will provide a powerful generation technique.

Fact 4. Dynamic Generation of Filter NACs: Given a set of forward translation

rules, then generate the set of critical pairs P1 ⇐
tr1,FT ,m1
====== K =

tr2,FT ,m2
=====⇒ P2. If P1 (or

similarly P2) is misleading, we generate a new �lter NAC m1 : L1,FT → K for tr 1,FT leading

to tr 1,FN , such that K =
tr1,FN
===⇒ P1 violates the �lter NAC. Hence, the critical pair for tr 1,FT

and tr 2,FT is no longer a critical pair for for tr 1,FN and tr 2,FT . But this construction may
lead to new critical pairs for the forward translation rules with �lter NACs. The procedure
is repeated until no further �lter NAC can be found or validated. This construction starting
with TRFT always terminates, if the structural part of each graph of a rule is �nite.

Proof. The constructed NACs are �lter NACs, because the transformation stepK =
tr1,FT ,m1
=====⇒

P1 contains the misleading graph P1. The procedure terminates, because the critical pairs
are bounded by the amount of possible pairwise overlappings of the left hand sides of the
rules. The amount of overlappings can be bounded by considering only constants and
variables as possible attribute values.

For our case study the dynamic generation terminates already after the second round,
which is typical for practical applications, because the amount of already translated ele-
ments in the new critical pairs usually decreases. Furthermore, the amount of NACs can
be reduced by combining similar NACs di�ering only on some translation attributes. The
remaining critical pairs that do not specify �lter NACs show e�ective con�icts between
transformation rules and they can be provided to the developer of the model transforma-
tion to support the design phase.

The �lter NACs introduced in this paper on the one hand support the analysis of func-
tional behaviour and on the other hand, they also improve the e�ciency of the execution.
By de�nition, the occurrence of a �lter NAC at an intermediate model means that the
application of the owning rule would lead to a model that cannot be translated completely,
i.e. the execution of the model transformation would perform backtracking at a later step.
This way, a �lter NAC cuts o� possible backtracking paths of the model transformation.
As presented in Fact 3 some �lter NACs can be generated automatically and using Fact 4
a larger set of them can be obtained based on the generation of critical pairs. Finally, by
Thms. 2 and 3 we can completely avoid backtracking if TRFN has no signi�cant critical
pair or alternatively, if all critical pairs are strictly con�uent.

As shown by Fact 5 below, �lter NACs do not change the behaviour of model trans-
formations. The only e�ect is that they �lter out derivation paths, which would lead to
misleading graphs, i.e. to backtracking for the computation of the model transformation
sequence. This means that the �lter NACs �lter out backtracking paths. This equiva-
lence is used on the one hand for the analysis of functional behaviour in Thms. 2 and 3
and furthermore, for improving the e�ciency of the execution of model transformations as
explained in Sec. 4.
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Fact 5. Equivalence of Transformations with Filter NACs: Given a triple graph
grammar TGG = (TG , ∅,TR) and a triple graph G0 = (GS ← ∅ → ∅) typed over TG.
Let G′0 = (AttF(GS) ← ∅ → ∅). Then, the following are equivalent for almost injective
matches:

1. ∃ a complete TGT-sequence G′0 =
tr∗FT ,m∗FT=====⇒ G′ via forward translation rules.

2. ∃ a complete TGT-sequence G′0 =
tr∗FN ,m∗FT=====⇒ G′ via forward translation rules with

�lter NACs.

Proof. Sequence 1 consists of the same derivation diagrams as Sequence 2. We need to
show that NAC-consistency is implied for both directions.

Direction ⇐: Sequence 1 is NAC-consistent, because sequence 2 is NAC-consistent
and each step in Sequence 2 involves a superset of the NACs for the corresponding step in
Sequence 1.

Direction ⇒: Consider a step Gi−1 =
tr(i,FT),m(i,FT)
=========⇒ Gi, which leads to the step

Gi−1 =
tr(i,FN ),m(i,FT)
=========⇒ Gi if NACs are not considered. Assume that mFT does not ful�ll

some NAC of trFN . This implies that a �lter NAC (n : Li,FT → N) is not ful�lled, because
all other NACs are ful�lled by NAC-consistency of Sequence 1. Thus, there is a triple mor-
phism q : N → Gi−1 with q ◦ n = mi,FT . By Thm. 6.18 (Restriction Thm.) in [1] we have

that the transformation step Gi−1 =
tr(i,FN ),m(i,FT)
=========⇒ Gi can be restricted to N =

tr(i,FT),n
=====⇒ H

with embedding H → Gi. By Def. 9 of �lter NACs we know that N =
tr(i,FT),n
=====⇒ H and H is

misleading, which implies by Def. 8 that Gi is not translatable. But Sequence 1 leads to
a completely translated graph Gn and we have G1 ⇒∗ Gn. This is a contradiction and we
have that the �lter NAC is ful�lled. Therefore, each transformation step is NAC-consistent.

Theorem 2. Functional Behaviour: Let MTbe a model transformation based on for-
ward translation rules TRFT and let TRFN extend TRFT with �lter NACs such that TRFN

is terminating and all critical pairs are strictly con�uent. Then, MT has functional be-
haviour. Moreover, the model transformation MT ′ based on TRFN does not require back-
tracking and de�nes the same model transformation relation, i.e. MTR′ = MTR.

Remark 2. TRFN is terminating, if TRFT is terminating and a su�cient condition is
given in Thm. 1. Termination of TRFN with strict con�uence of critical pairs implies
unique normal forms by the Local Con�uence Theorem in [16].

Proof. For functional behaviour of the model transformation we have to show that each
source model GS ∈ VLS is transformed into a unique (up to isomorphism) completely
translated target model GT , which means that there is a completely translated triple model
G′ with G′T = GT , and furthermore GT ∈ VLT .

For GS ∈ VLS we have by de�nition of VL that there is a GT ∈ VLT and a TGT-

sequence ∅ =
tr∗
=⇒ (GS ← GC → GT ) via TR and using the decomposition theorem with
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NACs in [6] we obtain a match consistent TGT-sequence ∅ =
tr∗S=⇒ (GS ← ∅ → ∅) =

tr∗F==⇒
(GS ← GC → GT ) and by Fact 1 in [13] together with Fact 1 above a complete TGT-

sequence G′0 = (AttF(GS)← ∅→ ∅) =
tr∗FT==⇒ (AttT(GS)← GC → GT ) = G′.

This means that (GS, G′0 =
tr∗FT==⇒ G′, GT ) is a model transformation sequence based on

TRFT . Assume that we also have a completely translated TGT-sequence G′0 = (AttF(GS)←
∅ → ∅) =

tr
∗
FT==⇒ (AttT(GS) ← GC → GT ) = G

′
. By Fact. 5 we also have the complete

TGT-sequences G′0 =
tr∗FN==⇒ G′ and G′0 =

tr∗FN==⇒ G
′
. Using the precondition that TRFN is termi-

nating and all critical pairs are strictly con�uent we can conclude by the Local Con�uence
Theorem in [16] that G′ ∼= G

′
(see Remark 2.2) and hence, GT

∼= GT .
Backtracking is not required, because termination of TRFN with strict con�uence of

critical pairs implies unique normal forms by the Local Con�uence Theorem in [16]. By
local con�uence we have that there any terminating TGT-sequences (AttF (GS) ← ∅ →
∅) =

tr∗FN==⇒ G′n leads to a unique G′n up to isomorphism and by correctness and completeness
(Thm. 1) we have that G

′S
n = AttT (GS).

The model transformation relation is the same, because we have by Fact 5 the equiva-
lence of the model transformation sequences of MT and MT ′.

If the set of generated critical pairs of a system of forward translation rules with �lter
NACs TRFN is empty, we can directly conclude from Thm. 2 that the corresponding system
with forward translation rules TRFT has functional behaviour. From an e�ciency point of
view, model transformations should be based on a compact set of rules, because large rule
sets usually involve more attempts of matching until �nding a valid one at a concrete step.
In the optimal case, the rule set is minimal in the sense that each transformation sequence
of the model transformation is itself unique up to switch equivalence. For this reason, we
introduce the notion of strong functional behaviour.

De�nition 10. Strong Functional Behaviour of Model Transformations: A
model transformation based on forward translation rules TRFN with �lter NACs has strong
functional behaviour if for each GS ∈ LS ⊆ VLS there is a GT ∈ VLT and a model

transformation sequence (GS, G0 =
tr∗FN==⇒ Gn, GT ) and each two terminating TGT-sequences

G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are switch-equivalent up to isomorphism.

Remark 3. 1. The sequences are terminating means that no rule in TRFN is applicable
any more, but it is not required that the sequences are complete, i.e. that G′n and G

′
m

are completely translated.

2. Strong functional behaviour implies functional behaviour, because G′n and G
′
m com-

pletely translated implies that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are terminating TGT-

sequences.

3. Two sequences t1 : G0 ⇒∗ G1 and t2 : G0 ⇒∗ G2 are called switch-equivalent,
written t1 ≈ t2, if G1 = G2 and t2 can be obtained from t1 by switching sequential
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independent steps according to the Local Church Rosser Theorem with NACs [16].
The sequences t1 and t2 are called switch-equivalent up to isomorphism if t1 : G0 ⇒∗
G1 has an isomorphic sequence t1′ : G0 → G2 (using the same sequence of rules) with
i : G1 −∼→ G2, written t1′ = i ◦ t1, such that t1′ ≈ t2. This means especially that the
rule sequence in t2 is a permutation of that in t1.

The third main result of this paper shows that strong functional behaviour of model
transformations based on forward translation rules with �lter NACs can be completely
characterized by the absence of �signi�cant� critical pairs.

De�nition 11. Signi�cant Critical Pair: A critical pair P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒ P2 for

TRFN is called signi�cant, if it can be embedded into a parallel dependent pair G′1 ⇐
tr1,FN
====

G′ =
tr2,FN
===⇒ G′2 such that there is GS ∈ VLS and G′0 =

tr∗FN==⇒ G′ with G′0 = (AttF(GS)← ∅→
∅). G1′

G′0
∗ +3 G′

tr2,FN $,RRRRRRR
RRRRRRR

tr1,FN 19llllll
llllll

G′2

Theorem 3. Strong Functional Behaviour: A model transformation based on ter-
minating forward translation rules TRFN with �lter NACs has strong functional behaviour
and does not require backtracking i� TRFN has no signi�cant critical pair.

Proof.

Direction �⇐�: Assume that TRFN has no signi�cant critical pair. Similar to the proof
of Thm. 2 we obtain for each GS ∈ VLS a GT ∈ VLT and a complete TGT-sequence

G′0 =
tr∗FT==⇒ G′ and a model transformation (GS, G′0 =

tr∗FT==⇒ G′, GT ) based on TRFT

underlying TRFN . By Lem. 5 above we also have a complete TGT-sequence G′0 =
tr∗FN==⇒

G′ and hence, also a model transformation (GS, G′0 =
tr∗FT==⇒ G′, GT ) based on TRFT

underlying TRFN . In order to show strong functional behaviour let G′0 =
tr∗FN==⇒ G′n and

G′0 =
tr
∗
FN==⇒ G

′
m be two terminating TGT-sequences with m, n ≥ 1. We have to show

that they are switch-equivalent up to isomorphism. We show by induction on the
combined length n + m that both sequences can be extended to switch-equivalent
sequences.

For n+m = 2 we have n = m = 1 with t1 : G′0 =
trFN ,m
====⇒ G′1 and t1 : G′0 =

trFN ,m
====⇒ G

′
1. If

trFN = trFN and m = m, then both are isomorphic with isomorphism i : G
′
1 −∼→ G′1,

such that t1 ≈ i ◦ t1. If not, then t1 and t1 are parallel independent, because
otherwise we would have a signi�cant critical pair by completeness of critical pairs

in [16]. By the Local Church Rosser Theorem [16] we have t2 : G′1 =
trFN==⇒ G′2 and

t2 : G
′
1 =

trFN==⇒ G′2, such that t2 ◦ t1 ≈ t2 ◦ t1 : G′0 ⇒∗ G′2.

Now assume that for t1 : G′0 ⇒∗ G′n−1 and t1 : G′0 ⇒∗ G
′
m we have extensions

t2 : G′n−1 ⇒∗ H, t2 : G
′
m ⇒∗ H, such that t2 ◦ t1 ≈ t2 ◦ t1.
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G′0
t1 +3∗

t1
��∗

G′n−1
t +3

t2

�� ∗

G′n

t3

�� ∗
G
′
m t2

+3∗H
t3

+3∗K

Now consider a step t : G′n−1 ⇒ G′n, then we have to show that t ◦ t1 and t1 can be
extended to switch-equivalent sequences. By induction hypothesis and de�nition of
signi�cant critical pairs also t and t2 can be extended by t3 : G′n ⇒∗ K, t3 : H ⇒∗ K,
such that t3 ◦ t ≈ t3 ◦ t2. Now, composition closure of switch equivalence implies
t3 ◦ t ◦ t1 ≈ t3 ◦ t2 ◦ t1 : G′0 ⇒∗ K. This completes the induction proof.

Now, we use that G′n and G
′
m are both terminal which implies that t3 and t3 ◦ t2

must be isomorphisms. This shows that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are switch-

equivalent up to isomorphism.

Direction �⇒�: Assume now that TRFN has strong functional behaviour and that TRFN

has a signi�cant critical pair. We have to show a contradiction in this case.

Let P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒ P2 be the signi�cant critical pair which can be embedded

into a parallel dependent pair G1 ⇐
tr1,FN
==== G′ =

tr2,FN
===⇒ G2, such that there is GS ∈ VLS

with G′0 =
tr∗FN==⇒ G′ and G′0 = (AttF(GS) ← ∅ → ∅). Since TRFN is terminating we

have terminating sequences G1 ⇒∗ G1n via TRFN and G2 ⇒∗ G2m via TRFN . By
composition we have the following terminating TGT-sequences

1. G′0 =
trFN==⇒ G′ =

tr1,FN
===⇒ G1 ⇒∗ G1n

2. G′0 =
trFN==⇒ G′ =

tr2,FN
===⇒ G2 ⇒∗ G2m

Since TRFN has strong functional behaviour both are switch-equivalent up to iso-
morphism. For simplicity assume G1n = G2m instead of G1n

∼= G2m. This implies

n = m and G′ =
tr1,FN
===⇒ G1 ⇒∗ G1n switch-equivalent to G′ =

tr2,FN
===⇒ G2 ⇒∗ G1n. This

means tr 2,FN occurs in G1 ⇒∗ G1n and can be shifted in G′ =
tr1,FN
===⇒ G1 ⇒∗ G1n, such

that we obtain G′ =
tr2,FN
===⇒ G2 ⇒∗ G1n.

But this implies that in an intermediate step we can apply the parallel rule tr 1,FN +

tr 2,FN leading to parallel independence of G′ =
tr1,FN
===⇒ G1 and G′ =

tr2,FN
===⇒ G2, which is

a contradiction. Hence, TRFN has no signi�cant critical pair.

It remains to show that strong functional behaviour implies that backtracking is not re-
quired. We have that TRFN is terminating. Assume there is a terminating TGT-sequences

(AttF (GS) ← ∅ → ∅) =
tr∗FT==⇒ G′n with G

′S
n 6= AttT (GS). By correctness and completeness

(Thm. 1) we have that there is a further terminating sequence (AttF (GS)← ∅→ ∅) =
tr∗FT==⇒

G
′′
n with G

′′S
n = AttT (GS). By strong functional behaviour we have that both sequences

are switch-equivalent up to isomorphism and hence, G
′S
n = G

′′S
n , which is a contradiction

and we have that backtracking is not required.
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Figure 8: Triple graph instance

Example 7. Functional Behaviour: We analyze functional behaviour of the model
transformation CD2RDBM with triple rulesTR given in Figs. 3 and 4. First of all,
CD2RDBM is terminating according to Thm. 1. For analyzing the local con�uence we
can use the tool AGG [21] for the generation of critical pairs. We use the extended rule
Class2TableFN as shown in Fig. 7 and extend it by a further �lter NAC obtained by the
static generation acc. to Fact 3. AGG detects two critical pairs showing a con�ict of
the rule �PrimaryAttr2Column� with itself for an overlapping graph with two primary at-
tributes. Both critical pairs lead to additional �lter NACs by the dynamic generation of
�lter NACs in Fact 4 leading to a system of forward translation rules with �lter NACs
without any critical pair. Thus, we can apply Thm. 3 and show that the model transforma-
tion based on the forward translation rules with �lter NACs TRFN has strong functional
behaviour and does not require backtracking. Furthermore, by Thm. 2 we can conclude that
the model transformation based on the forward translation rules TRFT without �lter NACs
has functional behaviour and does not require backtracking. As an example, Fig. 8 shows
the resulting triple graph (translation attributes are omitted) of a model transformation
starting with the class diagram GS.

4 E�cient Analysis and Execution

Our approach to model transformations based on triple graph grammars (TGGs) with
NACs will be discussed now with respect to the e�ciency for both, analysis of properties
and execution.

Correctness and Completeness: As shown by Thm. 1 based on [6, 3] model transforma-
tions based on TGGs with NACs are correct and complete with respect to the language of
integrated models VL generated by the triple rules. Thus, correctness and completeness
are ensured by construction.
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Termination: As presented in [3] termination is essentially ensured, if all triple rules are
creating on the source component. This property can be checked statically, automatically
and e�ciently by checking (RS \ LS) 6= ∅. In Thm. 1 we have given an explicit condition
for the forward translation rules to be terminating.

Functional Behaviour: The new concept of �lter NACs introduced in this paper pro-
vides a powerful basis for reducing the analysis e�orts w.r.t. functional behaviour. Once
termination is shown as explained above, functional behaviour of model transformations
based on forward translation rules TRFT can be checked by generating the critical pairs of
the transformation system with AGG [21] and showing strict con�uence. The static and
dynamic generation of �lter NACs (Facts 3 and 4) allows to eliminate critical pairs. In
the best case, all critical pairs disappear showing the functional behaviour of the model
transformation immediately. The new notion of strong functional behaviour of a system
based on transformation rules TRFN with �lter NACs is completely characterized by the
absence of �signi�cant� critical pairs, such that we can ensure for each source model that
the transformation sequence is unique up to switch equivalence. Furthermore, the critical
pairs generated by AGG can be used to �nd the con�icts between the rules which may
cause non-functional behaviour of the model transformation and the modeler can decide
whether to change the rules or to keep the non-functional behaviour.

Model Size 

Model Transformation Sequences of CD2RDBM 

without Filter NACs with Filter NACs 

Time1) Success Rate Time1) Overhead Success Rate 

[Elements2)] [ms] [%] [ms] [%] [%] 

11 143,75 42,86 158,33 10,14 100,00 

25 302,75 16,84 335,45 10,80 100,00 

53 672,68 3,94 742,62 10,40 100,00 

109 1.481,43 0,17 1.584,86 6,98 100,00 

1) Average time of 100 successful model transformation sequences  
2) Nodes and Edges 

Table 1: Benchmark, Tool: AGG [21]

E�cient Execution: Filter NACs do not only improve the analysis of functional be-
haviour of a TGG, but also the execution of the model transformation process by for-
bidding the application of misleading transformation steps that would lead to a dead-end
eliminating the need of backtracking for these cases. Table 1 shows execution times us-
ing the transformation engine AGG [21]. The additional overhead caused by �lter NACs
is fairly small and lies in the area of 10% for the examples in the benchmark, which is
based on the average execution times for 100 executions concerning models with 11, 25,
53 and 109 elements (nodes and edges), respectively. The �rst model with 11 elements is
the presented class diagram in the source component of Fig. 8. The listed times concern
successful execution paths only, i.e. those executions that lead to a completely translated
model. The success rate for transformations without �lter NACs is lower for larger models
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and in particular, for the model with 109 elements the success rate is below 0.2%. This
means that the error rate is above 99.8% while the success rate for the system with �lter
NACs is always 100%. Times for the unsuccessful executions, which appear in the system
without �lter NACs, are not considered. However, in order to ensure completeness there is
the need for backtracking for the system without �lter NACs. This backtracking overhead
is in general exponential. In our case study, e.g., the rule �Class2Table� can be applied at
misleading parts already at the beginning of a transformation. Backtracking for general
model transformation systems is reduced by �lter NACs and avoided completely in the
case that no �signi�cant critical pair� remains present (see Thm. 3), which we have shown
to be ful�lled for our example. The additional overhead of about 10% for �lter NACs is in
most cases much smaller than the e�orts for backtracking.

Moreover, in order to perform model transformations using highly optimized transfor-
mation machines for plain graph transformation, such as Fujaba and GrGen.Net [19], we
have presented how the transformation rules and models can be equivalently represented
by plain graphs and rules. First of all, triple graphs and morphisms are �attened accord-
ing to the construction presented in [2, 13], which can be extended to NACs using the
�attening of morphisms. Furthermore, we presented in this paper how forward rules with
NACs are extended to forward translation rules with NACs, such that the control condition
�source consistency� [5] and also the gluing condition (Fact 2) are ensured automatically
for complete sequences, i.e. they do not need to be checked during the transformation.

Summing up, the presented results allow us to combine the easy, intuitive and formally
well founded speci�cation of model transformations based on triple graph grammars with
NACs with the best available tools for executing graph transformations while still ensuring
correctness and completeness.

5 Related Work

Since 1994, several extensions of the original TGG de�nitions [17] have been published
[18, 15, 8] and various kinds of applications have been presented [20, 9, 14]. The formal
construction and analysis of model transformations based on TGGs has been started in [5]
by analyzing information preservation of bidirectional model transformations and continued
in [2, 4, 3, 6, 13], where model transformations based on TGGs are compared with those
on plain graph grammars in [2], TGGs with speci�cation NACs are analyzed in [6] and an
e�cient on-the-�y construction is introduced in [3]. A �rst approach analyzing functional
behaviour was presented for restricted TGGs with distinguished kernels in [4] and a more
general approach, however without NACs, based on forward translation rules in [13]. The
results in this paper for model transformations based on forward translation rules with
speci�cation and �lter NACs are based on the results of all these papers except of [4].

In [5] a similar case study based on forward rules is presented, but without using
NACs. This causes that more TGT-sequences are possible, in particular, an association
can be transformed into a foreign key with one primary key, even if there is a second
primary attribute that will be transformed into a second primary key at a later stage. This
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behaviour is not desired from the application point of view. Thus, the extended grammar
with NACs in this paper handles primary keys and foreign keys in a more appropriate way.
Furthermore, the current extended version has strong functional behaviour as shown in
Sec. 3.

In the following we discuss how the presented results can be used to meet the �Grand
Research Challenge of the TGG Community� formulated by Schürr et.al. in [18]. The
main aims are �Consistency�, �Completeness�, �Expressiveness� and �E�ciency� of model
transformations. The �rst two e�ectively require correctness, completeness w.r.t. the triple
language VL and additionally termination and functional behaviour. They are ensured as
shown in Sec. 3. �Expressiveness� requires suitable control mechanisms like NACs, which
are used extensively in this paper and we further extend the technique by additional control
mechanisms. In [7] more general application conditions [10] are considered, but functional
behaviour is not yet analyzed. Finally, we discussed in Sec. 4 that our approach can
be executed e�ciently based on e�cient graph transformation engines. Especially model
transformations ful�lling the conditions in Thm. 3 do not need to backtrack, which bounds
the number of transformation steps to the elements in the source model as required in [18].

6 Conclusion

In this paper we have studied model transformations based on triple graph grammars
(TGGs) with negative application conditions (NACs) in order to improve e�ciency of
analysis and execution compared with previous approaches in the literature. The �rst key
idea is that model transformations can be constructed by applying forward translation rules
with NACs, which can be derived automatically from the given TGG-rules with NACs. The
�rst main result shows termination under weak assumptions, correctness and completeness
of model transformations in this framework, which is equivalent to the approach in [6].
The second key idea is to introduce �lter NACs in addition to the NACs in the given
TGG-rules, which in contrast are called speci�cation NACs in this paper. Filter NACs
are useful to improve the analysis of functional behaviour for model transformations based
on critical pair analysis (using the tool AGG [21]) by �ltering out backtracking paths and
this way, some critical pairs. The second main result provides a su�cient condition for
functional behaviour based on the analysis of critical pairs for forward translation rules
with �lter NACs. If we are able to construct �lter NACs such that the corresponding
rules have no more �signi�cant� critical pairs, then the third main result shows that we
have strong functional behaviour, i.e. not only the results are unique up to isomorphism
but also the corresponding model transformation sequences are switch-equivalent up to
isomorphism. Surprisingly, we can show that the condition �no signi�cant critical pairs� is
not only su�cient, but also necessary for strong functional behaviour. Finally, we discuss
e�ciency aspects of analysis and execution of model transformations and show that our
sample model transformation CD2RDBM based on TGG-rules with NACs has strong
functional behaviour.

The main challenge in applying our main results on functional and strong functional
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behaviour is to �nd suitable �lter NACs, such that we have a minimal number of critical
pairs for the forward translation rules with �lter NACs. For this purpose, we are able
to provide static and dynamic techniques for the generation of �lter NACs (see Facts 3
and 4). The dynamic technique includes a check that certain models are misleading. In
any case, the designer of the model transformation can specify some �lter NACs directly
by himself, if he can ensure the �lter NAC property. In future work, we will study further
static conditions to check whether a model is �misleading�, because this allows to �lter
out misleading execution paths. In addition to that, we currently develop a extensions
to layered model transformations and amalgamated rules, which allow to further reduce
backtracking in general cases and to simplify the underlying rule sets.
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